41 research outputs found

    Influent Wastewater Microbiota and Temperature Influence Anaerobic Membrane Bioreactor Microbial Community

    Get PDF
    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25 °C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10 °C. The significant relative abundance of Methanosaeta at 10 °C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community

    Anaerobic Membrane Bioreactors to Treat Municipal Wastewater at Ambient Temperatures

    Get PDF
    Anaerobic biotechnology is viewed as a sustainable alternative to aerobic biotechnology for municipal wastewater recovery. However, anaerobic processes have not been successful in cold climates. Past examples have not been able to meet low organic effluent concentrations, or have failed due to biomass washout resulting from low temperature operation and short hydraulic residence time. Recently, the anaerobic membrane bioreactor (AnMBR) has been shown to achieve low effluent organic concentrations and maintain stable anaerobic biomass. However, shortcomings have included high energy demands for membrane operation and poor understanding of microbial community structures within AnMBRs. This dissertation describes efforts to improve AnMBRs by developing a low energy membrane operation strategy and describes the microbial relationships responsible for organic removal. Two different AnMBR configurations were operated at both 10 and 25oC. The AnMBRs achieved over 94% organic removal with average permeate five-day biochemical oxygen demand (BOD5) concentrations remaining at 10 mg/L or less while treating synthetic or real primary effluent municipal wastewater. The AnMBRs utilized either ceramic or polymeric external tubular membranes that were operated at crossflow velocities (CFV) ranging from 0.018 to 0.3 m/s, which is below the typical CVF range of 2 to 5 m/s. Use of fluidized granular activated carbon (GAC) within the membranes at very low CFV extended membrane run time between cleanings by 55 to 120% and resulted in energy demands of 0.07 to 0.15 kWh/m3, which represents a 98% energy savings compared to historical energy requirements. Additionally, Illumina sequencing and statistical techniques were used to characterize the microbial consortia within each AnMBR. Results indicated a large portion of the microbial communities were composed of only 5 out of over 700 uniquely identified operational taxonomic units. Unique microbial community structures were observed in each bioreactor during synthetic wastewater operation, ostensibly due to selective pressures including bioreactor configuration and temperature. A significant shift in all AnMBR microbial populations was observed when switching from synthetic to real wastewater, suggesting that continual bioreactor seeding with influent wastewater microbiota impacts bioreactor community composition. Sequencing and results of activity assays also indicated that hydrogenotrophic methanogenesis emerged as the dominant pathway in each AnMBR

    Removal of Antibiotic Resistance Genes in an Anaerobic Membrane Bioreactor Treating Primary Clarifier Effluent at 20 °C

    Get PDF
    Anaerobic membrane bioreactors (AnMBR) play a key role in future plans for sustainable wastewater treatment and resource recovery because they have no energy-intensive oxygen transfer requirements and can produce biomethane for renewable energy. Recent research results show that they can meet relatively stringent discharge limits with respect to BOD5 and TSS when treating municipal wastewater primary effluent. Sustainable used water recovery plans should also consider removal of unregulated pollutants. Antibiotic resistance genes (ARGs) represent an important emerging contaminant due to public health concerns surrounding the spread of infections resistant to common antibiotics. Conventional activated sludge processes have demonstrated mixed results regarding ARG removal. The objective of this research was to determine the impact of an AnMBR on ARG removal when treating municipal primary clarifier effluent at 20 °C. AnMBR treatment resulted in 3.3 to 3.6 log reduction of ARG and the horizontal gene transfer determinate, intI1, copies in filtrate. Membrane treatment significantly decreased the total biomass as indicated by a decrease in 16S rRNA gene concentration. Microbial community analysis via Illumina sequencing revealed that the relative abundance of putative pathogens was higher in membrane filtrate compared to primary effluent although the overall bacterial 16S rRNA gene concentrations was lower in filtrate. Membrane treatment also substantially reduced microbial diversity in filtrate compared to anaerobic reactor contents

    Silk nanoparticle manufacture in semi-batch format

    Get PDF
    Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies

    Volumetric scalability of microfluidic and semi-batch silk nanoprecipitation methods

    Get PDF
    Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aided through insight into the property drifts incited by nanoprecipitation scale-up and the identification of critical process parameters to maintain throughout scaling. Here, we report the reproducibility of silk nanoprecipitation on volumetric scale-up in low-shear, semi-batch systems and estimate the reproducibility of chip parallelization for volumetric scale-up in a high shear, staggered herringbone micromixer. We showed that silk precursor feeds processed in an unstirred semi-batch system (mixing time > 120 s) displayed significant changes in the nanoparticle physicochemical and crystalline properties following a 12-fold increase in volumetric scale between 1.8 and 21.9 mL while the physicochemical properties stayed constant following a further 6-fold increase in scale to 138 mL. The nanoparticle physicochemical properties showed greater reproducibility after a 6-fold volumetric scale-up when using lower mixing times of greater similarity (8.4 s and 29.4 s) with active stirring at 400 rpm, indicating that the bulk mixing time and average shear rate should be maintained during volumetric scale-up. Conversely, microfluidic manufacture showed high between-batch repeatability and between-chip reproducibility across four participants and microfluidic chips, thereby strengthening chip parallelization as a production strategy for silk nanoparticles at pilot, clinical, and industrial scales

    Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly

    Get PDF
    Tuning silk fibroin nanoparticle morphology using nanoprecipitation for bottom-up manufacture is an unexplored field that has the potential to improve particle performance characteristics. The aim of this work was to use both semi-batch bulk mixing and micro-mixing to modulate silk nanoparticle morphology by controlling the supersaturation and shear rate during nanoprecipitation. At flow rates where the shear rate was below the critical shear rate for silk, increasing the concentration of silk in both bulk and micro-mixing processes resulted in particle populations of increased sphericity, lower size, and lower polydispersity index. At high flow rates, where the critical shear rate was exceeded, the increased supersaturation with increasing concentration was counteracted by increased rates of shear-induced assembly. The morphology could be tuned from rod-like to spherical assemblies by increasing supersaturation of the high-shear micro-mixing process, thereby supporting a role for fast mixing in the production of narrow-polydispersity silk nanoparticles. This work provides new insight into the effects of shear during nanoprecipitation and provides a framework for scalable manufacture of spherical and rod-like silk nanoparticles

    Correction : Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly

    Get PDF
    Correction for ‘Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly’ by Saphia A. L. Matthew et al., RSC Adv., 2022, 12, 7357–7373. https://doi.org/10.2039/D1RA07764C. The authors regret that there were sub-figure placement errors present in Fig. 4 and 5 of the main article. The sub-figure placement error in Fig. 4 was carried into Fig. S3, which shows additional statistical significances. The corrected figures are shown below

    Impact of silk hydrogel secondary structure on hydrogel formation, silk leaching and in vitro response

    Get PDF
    Silk can be processed into a broad spectrum of material formats and is explored for a wide range of medical applications, including hydrogels for wound care. The current paradigm is that solution-stable silk fibroin in the hydrogels is responsible for their therapeutic response in wound healing. Here, we generated physically cross-linked silk fibroin hydrogels with tuned secondary structure and examined their ability to influence their biological response by leaching silk fibroin. Significantly more silk fibroin leached from hydrogels with an amorphous silk fibroin structure than with a beta sheet–rich silk fibroin structure, although all hydrogels leached silk fibroin. The leached silk was biologically active, as it induced vitro chemokinesis and faster scratch assay wound healing by activating receptor tyrosine kinases. Overall, these effects are desirable for wound management and show the promise of silk fibroin and hydrogel leaching in the wider healthcare setting

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore